论文标题

RGB-D显着对象检测的分层动态过滤网络

Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection

论文作者

Pang, Youwei, Zhang, Lihe, Zhao, Xiaoqi, Lu, Huchuan

论文摘要

RGB-D显着对象检测(SOD)的主要目的是如何更好地整合和利用跨模式融合信息。在本文中,我们从新的角度探讨了这些问题。我们通过密集的连接结构整合了不同模态的特征,并利用其混合特征与不同尺寸的接收场生成动态过滤器。最后,我们实施了一种更灵活,更有效的多尺度跨模式特征处理,即动态扩张的金字塔模块。为了使预测具有更清晰的边缘和一致的显着性区域,我们设计了一个混合增强的损耗函数,以进一步优化结果。此损耗函数也经过验证,可在单模式RGB SOD任务中有效。就六个指标而言,该提出的方法在八个具有挑战性的基准数据集上优于现有的十二种方法。大量实验验证了所提出的模块和损耗函数的有效性。我们的代码,模型和结果可在\ url {https://github.com/lartpang/hdfnet}上找到。

The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information. In this paper, we explore these issues from a new perspective. We integrate the features of different modalities through densely connected structures and use their mixed features to generate dynamic filters with receptive fields of different sizes. In the end, we implement a kind of more flexible and efficient multi-scale cross-modal feature processing, i.e. dynamic dilated pyramid module. In order to make the predictions have sharper edges and consistent saliency regions, we design a hybrid enhanced loss function to further optimize the results. This loss function is also validated to be effective in the single-modal RGB SOD task. In terms of six metrics, the proposed method outperforms the existing twelve methods on eight challenging benchmark datasets. A large number of experiments verify the effectiveness of the proposed module and loss function. Our code, model and results are available at \url{https://github.com/lartpang/HDFNet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源