论文标题

与超长的伽马射线爆发相关的发光超新星来自无氢祖细胞的脉冲配对稳定性延伸

Luminous supernovae associated with ultra-long gamma-ray bursts from hydrogen-free progenitors extended by pulsational pair-instability

论文作者

Moriya, Takashi J., Marchant, Pablo, Blinnikov, Sergei I.

论文摘要

我们表明,与超长伽马射线爆发(GRB)相关的发光超新星(SNE)可能与脉冲配对稳定性扩展的无氢祖细胞爆炸的缓慢冷却有关。在随附的纸(Marchant&Moriya 2020)中,我们表明,经历脉动配对稳定性的一些快速旋转的无氢GRB祖细胞可以保持由脉冲成对稳定性引起的扩展结构,直到核心崩溃为止。这样的祖细胞的半径超过10 rsun,有时在核心崩溃时达到1000 rsun。因此,它们是超长GRB的有希望的祖细胞。在这里,我们在1962年的RSUN半径上进行了一个扩展的无氢祖细胞的爆炸的爆炸曲线建​​模。多亏了较大的祖细胞半径,冲击突破后的射流会缓慢冷却,并且即使没有56NI核衰减的能量输入爆炸能量时,它们也会在光学上迅速发展(<〜10天)发光(> 〜1e43 erg/s)SNE,即使爆炸能量超过1E52 ERG。 56NI衰减能量输入可能会影响光光曲线峰后的光曲线,并在56ni质量约为1 msun时使光曲线衰减慢。它们还具有超过10,000 km/s的快速光球速度,在峰值光度左右,热光球温度高于10,000 k。我们发现,与超长GRB 111209a相关的SN 2011KL的光光曲线中发现的快速上升和发光峰可以解释为扩展祖细胞的冷却阶段。 Marchant&Moriya(2020)提出的超长GRB祖细胞可以解释超长的GRB持续时间和随附的SN特性。当GRB射流离轴或cho住时,可以将发光的SNE视为快速蓝色的光学瞬变,而无需伴随GRB。 (简略)

We show that the luminous supernovae (SNe) associated with ultra-long gamma-ray bursts (GRBs) can be related to the slow cooling from the explosions of hydrogen-free progenitors extended by pulsational pair-instability. In the accompanying paper (Marchant & Moriya 2020), we have shown that some rapidly-rotating hydrogen-free GRB progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. Such progenitors have large radii exceeding 10 Rsun and they sometimes reach beyond 1000 Rsun at the time of the core collapse. They are, therefore, promising progenitors of ultra-long GRBs. We here perform the light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 Rsun. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (<~ 10 days) luminous (>~ 1e43 erg/s) SNe in optical even without the energy input from the 56Ni nuclear decay when the explosion energy is more than 1e52 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slow when the 56Ni mass is around 1 Msun. They also have fast photospheric velocity above 10,000 km/s and hot photospheric temperature above 10,000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long GRB 111209A, can be explained as the cooling phase of the extended progenitor. The ultra-long GRB progenitors proposed in Marchant & Moriya (2020) can explain both the ultra-long GRB duration and the accompanying SN properties. When the GRB jet is off-axis or choked, the luminous SNe could be observed as fast blue optical transients without accompanying GRBs. (abridged)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源