论文标题
恒星旋转对成对稳定超新星黑洞质量差异的影响
The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae
论文作者
论文摘要
配对超新星(PISNE)的模型预测$ \ sim 45m_ \ odot-1220m_ \ odot $之间的差距(BH)质量存在差距,该质量称为上部BH质量间隙。随着引力波天体物理学的出现,已经有可能检验这一预测,并且有一个重要的相关努力来了解什么理论不确定性改变了这一差距的边界。在这项工作中,我们研究了旋转对Pisne的流体动力学的影响,Pisne没有留下紧凑的残留物,以及脉冲 - Pisne(PPISNE)的演变,在形成紧凑的物体之前,会经历热核喷发。我们对金属差环境(z_ \ odot/50)$进行非旋转和快速旋转的剥离氦星进行模拟,以解决上部质量间隙的下边缘。我们发现,模拟的结果取决于角动量传输的效率,其中包括通过Spruit-Tayler Dynamo进行有效耦合的模型,将质量间隙的下边缘向上移动$ \ sim 4 \%\%$ $,而不包括此效果不包括$ \ sim sim \ sim 15 \%\%\%$ \%$ \%。因此,我们期望上部质量间隙的下边缘取决于BH自旋,可以随着观察到的BH合并数量增加而进行测试。此外,我们表明,经历PPISNE的恒星在铁核倒塌处扩展了信封($ r \ sim 10-1000〜r_ \ odot $),使它们成为超长伽玛射线爆发的有前途的祖先。
Models of pair-instability supernovae (PISNe) predict a gap in black hole (BH) masses between $\sim 45M_\odot-120M_\odot$, which is referred to as the upper BH mass-gap. With the advent of gravitational-wave astrophysics it has become possible to test this prediction, and there is an important associated effort to understand what theoretical uncertainties modify the boundaries of this gap. In this work we study the impact of rotation on the hydrodynamics of PISNe, which leave no compact remnant, as well as the evolution of pulsational-PISNe (PPISNe), which undergo thermonuclear eruptions before forming a compact object. We perform simulations of non-rotating and rapidly-rotating stripped helium stars in a metal poor environment $(Z_\odot/50)$ in order to resolve the lower edge of the upper mass-gap. We find that the outcome of our simulations is dependent on the efficiency of angular momentum transport, with models that include efficient coupling through the Spruit-Tayler dynamo shifting the lower edge of the mass-gap upwards by $\sim 4\%$, while simulations that do not include this effect shift it upwards by $\sim 15\%$. From this, we expect the lower edge of the upper mass-gap to be dependent on BH spin, which can be tested as the number of observed BH mergers increases. Moreover, we show that stars undergoing PPISNe have extended envelopes ($R\sim 10-1000~R_\odot$) at iron-core collapse, making them promising progenitors for ultra-long gamma-ray bursts.