论文标题

在多层感知器分类器中实现冰估计器

Implementing the ICE Estimator in Multilayer Perceptron Classifiers

论文作者

Ward, Tyler

论文摘要

本文介绍了用于实现多层感知模型的ICE估计器的技术,并回顾了所得模型的性能。冰估计器在Apache Spark MultilayerPercePtronClassifier中实现,并以交叉验证显示,以胜过使用未调整的MLE(交叉透明镜)损失的库存多层MultilayerPerceptronClassifier。最终的模型具有相同的运行时性能,并且与库存MLP实现相似。此外,这种方法不需要超级参数,因此可行,作为换入式替代品,用于优化多层观察者分类器,无论在任何地方都可能引起人们的关注。

This paper describes the techniques used to implement the ICE estimator for a multilayer perceptron model, and reviews the performance of the resulting models. The ICE estimator is implemented in the Apache Spark MultilayerPerceptronClassifier, and shown in cross-validation to outperform the stock MultilayerPerceptronClassifier that uses unadjusted MLE (cross-entropy) loss. The resulting models have identical runtime performance, and similar fitting performance to the stock MLP implementations. Additionally, this approach requires no hyper-parameters, and is therefore viable as a drop-in replacement for cross-entropy optimizing multilayer perceptron classifiers wherever overfitting may be a concern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源