论文标题

MS-NAS:多尺度神经体系结构搜索医学图像分割

MS-NAS: Multi-Scale Neural Architecture Search for Medical Image Segmentation

论文作者

Yan, Xingang, Jiang, Weiwen, Shi, Yiyu, Zhuo, Cheng

论文摘要

神经体系结构搜索(NAS)的最新突破激发了医疗图像细分中的各种应用。但是,大多数现有的工作要么只是依靠高参数调整,要么坚持使用固定的网络主干,从而限制了基础搜索空间以识别更有效的体系结构。本文提出了一个多尺度NAS(MS-NAS)框架,该框架具有从网络骨干到单元操作的多尺度搜索空间,以及多尺度的融合功能以及具有不同尺寸的功能的融合功能。为了减轻由于较大的搜索空间而导致的计算开销,使用部分通道连接方案和两步解码方法来减少计算开销,同时保持优化质量。实验结果表明,在各种数据集中进行分割,MS-NAS的表现优于最先进的方法,并实现0.6-5.4%MIOU和0.4-3.5%DSC改进,而计算资源消耗却降低了18.0-24.9%。

The recent breakthroughs of Neural Architecture Search (NAS) have motivated various applications in medical image segmentation. However, most existing work either simply rely on hyper-parameter tuning or stick to a fixed network backbone, thereby limiting the underlying search space to identify more efficient architecture. This paper presents a Multi-Scale NAS (MS-NAS) framework that is featured with multi-scale search space from network backbone to cell operation, and multi-scale fusion capability to fuse features with different sizes. To mitigate the computational overhead due to the larger search space, a partial channel connection scheme and a two-step decoding method are utilized to reduce computational overhead while maintaining optimization quality. Experimental results show that on various datasets for segmentation, MS-NAS outperforms the state-of-the-art methods and achieves 0.6-5.4% mIOU and 0.4-3.5% DSC improvements, while the computational resource consumption is reduced by 18.0-24.9%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源