论文标题
使用同步耗散网络解决最大3切割问题
Solving the max-3-cut problem using synchronized dissipative networks
论文作者
论文摘要
许多计算问题通过古典计算很难纠缠,并且,由于摩尔定律正在停止,因此需要寻找解决这些问题的替代方法的需求正在增长。在这里,我们基于同步的激子 - 波利顿冷凝物网络实现了NP-HARD MAX-3切割问题的液体轻机。我们使用北极凝结物相干网络的连续相位自由度来克服伊辛机器中决策变量的二进制限制。冷凝水网络动力瞬变提供了XY Hamiltonian的光学快速退火。我们应用Goemans和Williamson随机超平面技术,将XY基态旋转构型离散为三元决策变量,以实现对最大3切割问题的近似最佳解决方案。在图像分割任务和电路设计中研究了提出的相干网络的应用。
Many computational problems are intractable through classical computing and, as Moore's law is drawing to a halt, demand for finding alternative methods in tackling these problems is growing. Here, we realize a liquid light machine for the NP-hard max-3-cut problem based on a network of synchronized exciton-polariton condensates. We overcome the binary limitation of the decision variables in Ising machines using the continuous-phase degrees of freedom of a coherent network of polariton condensates. The condensate network dynamical transients provide optically-fast annealing of the XY Hamiltonian. We apply the Goemans and Williamson random hyperplane technique, discretizing the XY ground state spin configuration to serve as ternary decision variables for an approximate optimal solution to the max-3-cut problem. Applications of the presented coherent network are investigated in image-segmentation tasks and in circuit design.