论文标题

Eagle:使用空中图像在现实世界中的大型车辆检测数据集

EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery

论文作者

Azimi, Seyed Majid, Bahmanyar, Reza, Henry, Corenin, Kurz, Franz

论文摘要

在近距离和远程视觉域中,通过在交通监控和灾难管理中应用的近距离视觉域中,从机载图像中的多级车辆检测是一项重要的任务。在过去的十年中,我们目睹了地面图像中的物体检测取得的重大进展,但它仍处于空中图像的起步阶段,这主要是由于多样化和大型数据集的稀缺性。尽管是用于不同应用程序的有用工具,但当前的空降数据集仅部分反映了现实情况的挑战。为了解决这个问题,我们在现实世界中使用空中图像引入Eagle(使用空中图像取代车辆检测),这是一个大型数据集,用于多级车辆检测,并在空中图像中使用对象方向信息。它具有高分辨率的航空图像,由不同的现实世界中的情况组成,具有各种相机传感器,分辨率,飞行高度,天气,照明,阴影,阴影,时间,时间,城市,乡村,遮挡和摄像机角度。注释是由具有小型和大型车辆类别的机载图像专家完成的。 Eagle包含215,986个实例,其中包含由四个点和方向定义的定向边界框注释的实例,使其成为迄今为止此任务中最大的数据集。它还支持有关消除阴影和阴影的研究,以及超分辨率和镶嵌应用。我们定义三个任务:通过(1)水平边界框,(2)旋转边界框和(3)面向边界框。我们进行了几项实验,以评估数据集上对象检测中的几种最新方法以形成基线。实验表明,Eagle数据集准确地反映了现实世界的情况和相应具有挑战性的应用程序。

Multi-class vehicle detection from airborne imagery with orientation estimation is an important task in the near and remote vision domains with applications in traffic monitoring and disaster management. In the last decade, we have witnessed significant progress in object detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different applications, current airborne datasets only partially reflect the challenges of real-world scenarios. To address this issue, we introduce EAGLE (oriEnted vehicle detection using Aerial imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery. It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle. The annotation was done by airborne imagery experts with small- and large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task. It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications. We define three tasks: detection by (1) horizontal bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried out several experiments to evaluate several state-of-the-art methods in object detection on our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects real-world situations and correspondingly challenging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源