论文标题

MEDAS:一个开源平台作为帮助破坏医学和信息学之间的墙壁的服务

MeDaS: An open-source platform as service to help break the walls between medicine and informatics

论文作者

Zhang, Liang, Li, Johann, Li, Ping, Lu, Xiaoyuan, Shen, Peiyi, Zhu, Guangming, Shah, Syed Afaq, Bennarmoun, Mohammed, Qian, Kun, Schuller, Björn W.

论文摘要

在过去的十年中,深度学习(DL)在许多领域取得了前所未有的成功,包括计算机视觉,自然语言处理和医疗保健。特别是,在分析,分割,分类和此外,DL正在经历高级医学图像分析应用程序的发展。一方面,利用DL进行医学图像分析的力量的巨大需求是由医学,临床和信息学背景的研究社区产生的,以共同分享其专业知识,知识,技能和经验。另一方面,学科之间的障碍在他们的道路上经常会阻碍完整而有效的合作。为此,我们提出了新颖的开源平台,即Medas - 医疗开源平台作为服务。据我们所知,MEDAS是第一个开源平台,该平台证明了使用与DL相关工具包的医学背景的研究人员的协作和互动服务,同时供来自信息科学的科学家或工程师了解医学知识方面。根据RINV(快速实施和验证)的一系列工具包和实用程序,我们提出的MEDAS平台可以在医学图像分析中实施预处理,后处理,增强,可视化和其他阶段。通过使用MEDA来验证并证明包括肺,肝脏,脑,胸部和病理的五项任务,可以有效地实现。

In the past decade, deep learning (DL) has achieved unprecedented success in numerous fields including computer vision, natural language processing, and healthcare. In particular, DL is experiencing an increasing development in applications for advanced medical image analysis in terms of analysis, segmentation, classification, and furthermore. On the one hand, tremendous needs that leverage the power of DL for medical image analysis are arising from the research community of a medical, clinical, and informatics background to jointly share their expertise, knowledge, skills, and experience. On the other hand, barriers between disciplines are on the road for them often hampering a full and efficient collaboration. To this end, we propose our novel open-source platform, i.e., MeDaS -- the MeDical open-source platform as Service. To the best of our knowledge, MeDaS is the first open-source platform proving a collaborative and interactive service for researchers from a medical background easily using DL related toolkits, and at the same time for scientists or engineers from information sciences to understand the medical knowledge side. Based on a series of toolkits and utilities from the idea of RINV (Rapid Implementation aNd Verification), our proposed MeDaS platform can implement pre-processing, post-processing, augmentation, visualization, and other phases needed in medical image analysis. Five tasks including the subjects of lung, liver, brain, chest, and pathology, are validated and demonstrated to be efficiently realisable by using MeDaS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源