论文标题
多PL动力学系统中多立场的计算方法
A Computational Approach to Multistationarity in Poly-PL Kinetic Systems
论文作者
论文摘要
在化学反应网络理论(CRNT)中工作的人感兴趣的一个重要问题是:从反应网络获得的系统是否会允许积极平衡,如果这样做,在化学计量类别中是否有多个? JI和Feinberg的较高缺陷算法(HDA)提供了一种确定具有质量动力动力学CRN的多立场能力(MAK)的方法。这个被称为多立法算法(MSA)的扩展,最近进入现场,用Power Law Kinetics(PLK)(PLK)来解决CRN,这是一种更通用的动力学系统(具有MAK Systems作为一种特殊情况)。对于本文,我们提供了一种计算方法来研究具有动力学的反应网络的多立即性特征,这些动力学是幂律函数的非负线性组合,称为poly-pl动力学(PYK)。这个想法是使用MSA,并将其与称为Star-MSC的转换(即$ s $ invariant期限通过最大化学计量系数添加反应)产生的PLK,该PLK在动态上等同于Pyks。这使我们能够确定更大类动力学系统的多站点能力。我们表明,如果转换的动态等效的PLK系统是一组特定速率常数的化学计量类别的多层次,那么它的原始相应的PYK系统也是如此。此外,转换后的PLK系统的单位性属性也意味着原始PYK系统的单位性质。
One important question that interests those who work in chemical reaction network theory (CRNT) is this: Does the system obtained from a reaction network admit a positive equilibrium and if it does, can there be more than one within a stoichiometric class? The higher deficiency algorithm (HDA) of Ji and Feinberg provided a method of determining the multistationarity capacity of a CRN with mass action kinetics (MAK). An extension of this, called Multistationarity Algorithm (MSA), recently came into the scene tackling CRNs with power law kinetics (PLK), a kinetic system which is more general (having MAK systems as a special case). For this paper, we provide a computational approach to study the multistationarity feature of reaction networks endowed with kinetics which are non-negative linear combinations of power law functions called poly-PL kinetics (PYK). The idea is to use MSA and combine it with a transformation called STAR-MSC (i.e., $S$-invariant Termwise Addition of Reactions via Maximal Stoichiometric Coefficients) producing PLKs that are dynamically equivalent to PYKs. This leads us to being able to determinine the multistationarity capacity of a much larger class of kinetic systems. We show that if the transformed dynamically equivalent PLK system is multistationary for a stoichiometric class for a set of particular rate constants, then so is its original corresponding PYK system. Moreover, the monostationarity property of the transformed PLK system also implies the monostationarity property of the original PYK system.