论文标题
伪 - 列米特歧管的广义最大原则和随机完整性
Generalized maximum principles and stochastic completeness for pseudo-Hermitian manifolds
论文作者
论文摘要
在本文中,我们建立了伪休米特歧管的广义最大原理。作为推论,推导了伪 - 休米特歧管的Omori-Yau类型最大原则。此外,我们证明,亚拉普拉斯人产生的热半群的随机完整性等同于广义最大原理的弱形式的有效性。最后,我们提供了这些广义最大原则的一些应用。
In this paper, we establish a generalized maximum principle for pseudo-Hermitian manifolds. As corollaries, Omori-Yau type maximum principles for pseudo-Hermitian manifolds are deduced. Moreover, we prove that the stochastic completeness for the heat semigroup generated by the sub-Laplacian is equivalent to the validity of a weak form of the generalized maximum principles. Finally, we give some applications of these generalized maximum principles.