论文标题

深度学习技术以从弱时间序列数据中进行引力波检测

Deep Learning Techniques to make Gravitational Wave Detections from Weak Time-Series Data

论文作者

Chauhan, Yash

论文摘要

当发生高能量事件(例如黑洞合并或中子星形碰撞)时,引力波是涟漪。第一个引力波(GW)检测(GW150914)是由激光干涉仪重力引力波观测站(Ligo)和处女座合作于2015年9月14日制成的。此外,GWS存在的证据证明了GW具有无数的影响,从恒星进化到普遍的相对性。重力波检测需要多个过滤器,并且必须深入研究过滤的数据,以得出结论数据是数据是小故障还是实际的重力波检测。但是,随着深度学习的使用,该过程大大简化了,因为它会大大降低过滤水平,即使模型产生概率结果,输出也更确定。我们的技术,深度学习利用了一维卷积神经网络(CNN)的不同实现。该模型是通过真实的Ligo噪声和GW波形模板的注射训练的。 CNN有效地使用分类将弱的GW时间序列与非高斯噪声与Ligo数据流中的故障进行分类。此外,我们是第一个利用微型调整来用第二次通过数据来训练模型的方法,同时从初始训练迭代中维护所有学习的功能。这使我们的模型具有100%的敏感性,比该领域的所有先前研究都高,当时在极低的信噪比(SNR)中对GWS进行实时检测,而计算量仍然较低。这种敏感性在某种程度上也是通过使用汉福德和利文斯顿探测器的深信号歧管来实现的,这使神经网络能够对误报有反应。

Gravitational waves are ripples in the space time fabric when high energy events such as black hole mergers or neutron star collisions take place. The first Gravitational Wave (GW) detection (GW150914) was made by the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Collaboration on September 14, 2015. Furthermore, the proof of the existence of GWs had countless implications from Stellar Evolution to General Relativity. Gravitational waves detection requires multiple filters and the filtered data has to be studied intensively to come to conclusions on whether the data is a just a glitch or an actual gravitational wave detection. However, with the use of Deep Learning the process is simplified heavily, as it reduces the level of filtering greatly, and the output is more definitive, even though the model produces a probabilistic result. Our technique, Deep Learning, utilizes a different implementation of a one-dimensional convolutional neural network (CNN). The model is trained by a composite of real LIGO noise, and injections of GW waveform templates. The CNN effectively uses classification to differentiate weak GW time series from non-gaussian noise from glitches in the LIGO data stream. In addition, we are the first study to utilize fine-tuning as a means to train the model with a second pass of data, while maintaining all the learned features from the initial training iteration. This enables our model to have a sensitivity of 100%, higher than all prior studies in this field, when making real-time detections of GWs at an extremely low Signal-to-noise ratios (SNR), while still being less computationally expensive. This sensitivity, in part, is also achieved through the use of deep signal manifolds from both the Hanford and Livingston detectors, which enable the neural network to be responsive to false positives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源