论文标题

在沟通限制下,深度学习智能逆变器的反应性电源控制

Deep Learning for Reactive Power Control of Smart Inverters under Communication Constraints

论文作者

Gupta, Sarthak, Kekatos, Vassilis, Jin, Ming

论文摘要

旨在使用网络密集型最佳功率流(OPF)解决方案和不足的本地控制之间的中值解决方案,该工作提倡使用深神经网络(DNNS)决定逆变器注入设定点。逆变器DNN自然而然地与馈线模型集成在一起,而不是以黑盒方式安装OPF解决方案,并接受了训练,以最大程度地降低范围内的目标,以逆变器和网络约束在平均不确定的网格条件下强制执行。学习以准平台的方式发生,并以随机OPF形式出现,通过作用于网格数据方案的随机原始偶对偶更新来处理。尽管整个培训了,但拟议的DNN还是在主奴隶架构中进行的。它的主部位是按实用程序运行的,以输出向所有逆变器的冷凝控制信号广播。它的从零件由逆变器实现,并由实用程序信号以及本地逆变器读数驱动。这种新颖的DNN结构独特地解决了小型数据难题,在该问题中,公用事业公司收集了详细的智能电表读数,但每小时都需要实时逆变器,应由本地输入和最小的公用事业协调驱动,以节省通信。数值测试证实了该物理意识DNN的逆变器解决方案对最佳控制策略的功效。

Aiming for the median solution between cyber-intensive optimal power flow (OPF) solutions and subpar local control, this work advocates deciding inverter injection setpoints using deep neural networks (DNNs). Instead of fitting OPF solutions in a black-box manner, inverter DNNs are naturally integrated with the feeder model and trained to minimize a grid-wide objective subject to inverter and network constraints enforced on the average over uncertain grid conditions. Learning occurs in a quasi-stationary fashion and is posed as a stochastic OPF, handled via stochastic primal-dual updates acting on grid data scenarios. Although trained as a whole, the proposed DNN is operated in a master-slave architecture. Its master part is run at the utility to output a condensed control signal broadcast to all inverters. Its slave parts are implemented by inverters and are driven by the utility signal along with local inverter readings. This novel DNN structure uniquely addresses the small-big data conundrum where utilities collect detailed smart meter readings yet on an hourly basis, while in real time inverters should be driven by local inputs and minimal utility coordination to save on communication. Numerical tests corroborate the efficacy of this physics-aware DNN-based inverter solution over an optimal control policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源