论文标题

基于测试的决策的可靠性:布尔决策功能的傅立叶分析

Reliability of decisions based on tests: Fourier analysis of Boolean decision functions

论文作者

Waldorp, Lourens, Marsman, Maarten, Borsboom, Denny

论文摘要

测试中的项目通常被用作做出决策的基础,因此,要求具有良好的心理测量特性(例如一维性)。在许多情况下,总和分数与阈值结合使用,以在通过或失败之间决定。在这里,我们考虑了这种决策功能是否合适,没有潜在变量模型,并且希望哪些属性是可取的。我们考虑决策功能的可靠性(稳定性),即,决策在扰动时会发生变化,或者项目结果的一部分(测量误差)的变化。我们关注的是,总和是否是汇总项目的最佳方法,如果是这样。我们使用测试理论,社会选择理论,图形模型,计算机科学和概率理论的想法来回答这些问题。我们得出的结论是,加权和分数具有理想的特性,即(i)符合测试理论,并且可观察到(类似于条件关联等条件),(ii)具有决策稳定(可靠)的特性,并且(iii)满足Rousseau的标准,即投入应与该决定相匹配。我们使用布尔功能的傅立叶分析来研究决策功能是否稳定,并找出(一组)项目对决策的影响太大。为了应用这些技术,我们从图形模型中调用想法,并使用概率分布的伪样性分解。

Items in a test are often used as a basis for making decisions and such tests are therefore required to have good psychometric properties, like unidimensionality. In many cases the sum score is used in combination with a threshold to decide between pass or fail, for instance. Here we consider whether such a decision function is appropriate, without a latent variable model, and which properties of a decision function are desirable. We consider reliability (stability) of the decision function, i.e., does the decision change upon perturbations, or changes in a fraction of the outcomes of the items (measurement error). We are concerned with questions of whether the sum score is the best way to aggregate the items, and if so why. We use ideas from test theory, social choice theory, graphical models, computer science and probability theory to answer these questions. We conclude that a weighted sum score has desirable properties that (i) fit with test theory and is observable (similar to a condition like conditional association), (ii) has the property that a decision is stable (reliable), and (iii) satisfies Rousseau's criterion that the input should match the decision. We use Fourier analysis of Boolean functions to investigate whether a decision function is stable and to figure out which (set of) items has proportionally too large an influence on the decision. To apply these techniques we invoke ideas from graphical models and use a pseudo-likelihood factorisation of the probability distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源