论文标题
量子液滴的稳定性和碰撞 - 对称双核耦合器
Stability and collisions of quantum droplets in PT -symmetric dual-core couplers
论文作者
论文摘要
我们研究了平均时间($ \ Mathcal {pt} $)对称性与光学晶格(OL)潜力对二进制剂量液滴(QDS)的动力学之间的相互作用的影响。发现对称非甲米系统中对称QD的稳定性取决于收益和损失$γ$,核心间耦合$κ$和OL潜力的竞争。在没有电势的情况下,$ \ Mathcal {pt} $ - 对称QD不稳定与对称性破坏的扰动不稳定,并且在弱耦合方案中以较大$ n $的稳定性检索了总冷凝器norm $ n $。正如预期的那样,$ \ MATHCAL {PT} $ - 对称QD的稳定区域会在$γ$增加时收缩,即$ \ Mathcal {pt} $对称性很容易破坏QD的稳定性。 $κ$的临界值超出了$ \ MATHCAL {pt} $ - 对称QD完全稳定在不间断的$ \ Mathcal {pt} $ - 对称阶段。在OL电位的存在下,$ \ Mathcal {pt} $ - 对称的现场QD仍然稳定,对于$ n $的相对较小和较大的值。尽管如此,已经证明,OL电位可以有助于$ \ Mathcal {pt} $ - 对称的现场QD,以某些中等值的$ n $。另一方面,值得注意的是,相对较小的$ \ Mathcal {pt} $ - 对称的异地QD不稳定,只有相对较大的QD稳定。此外,也考虑了稳定的$ \ MATHCAL {PT} $ - 对称QD之间的碰撞。据透露,慢慢移动的$ \ Mathcal {pt} $ - 对称QD倾向于合并呼吸器,而快速移动的QD则显示准弹性碰撞并分别以$ n $的小值和大值折磨。
We study the effect of the interplay between parity-time ($\mathcal{PT}$) symmetry and optical lattice (OL) potential on dynamics of quantum droplets (QDs) forming in a binary bosonic condensate trapped in a dual-core system. It is found that the stability of symmetric QDs in such non-Hermitian system depends critically on the competition of gain and loss $γ$, inter-core coupling $κ$, and OL potential. In the absence of OL potential, the $\mathcal{PT}$-symmetric QDs are unstable against symmetry-breaking perturbations with the increase of the total condensate norm $N$, and they retrieve the stability at larger $N$, in the weakly-coupled regime. As expected, the stable region of the $\mathcal{PT}$-symmetric QDs shrinks when $γ$ increases, i.e., the $\mathcal{PT}$ symmetry is prone to break the stability of QDs. There is a critical value of $κ$ beyond which the $\mathcal{PT}$-symmetric QDs are entirely stable in the unbroken $\mathcal{PT}$-symmetric phase. In the presence of OL potential, the $\mathcal{PT}$-symmetric on-site QDs are still stable for relatively small and large values of $N$. Nevertheless, it is demonstrated that the OL potential can assist stabilization of $\mathcal{PT}$-symmetric on-site QDs for some moderate values of $N$. On the other hand, it is worth noting that the relatively small $\mathcal{PT}$-symmetric off-site QDs are unstable, and only the relatively large ones are stable. Furthermore, collisions between stable $\mathcal{PT}$-symmetric QDs are considered too. It is revealed that the slowly moving $\mathcal{PT}$-symmetric QDs tend to merge into breathers, while the fast-moving ones display quasi-elastic collision and suffer fragmentation for small and large values of $N$, respectively.