论文标题
差异避免正方形的集合
Sets whose differences avoid squares modulo m
论文作者
论文摘要
我们证明,如果$ \ varepsilon(m)\至0 $任意缓慢,那么几乎所有$ m $和任何$ m $和任何$ a \ subset \ mathbb {z} _m $,这样$ a-a $不包含非零二次残基,我们有$ | a | a | a | a | \ leq m^{1/2- {1/2- \ varepsilon(M)$}
We prove that if $\varepsilon(m)\to 0$ arbitrarily slowly, then for almost all $m$ and any $A\subset\mathbb{Z}_m$ such that $A-A$ does not contain non-zero quadratic residues we have $|A|\leq m^{1/2-\varepsilon(m)}.$