论文标题
$ ac(σ)$多边形曲线的空间
$AC(σ)$ spaces for polygonally inscribed curves
论文作者
论文摘要
对于某些平面的紧凑子集的家族,集合中绝对连续功能的代数的同构类别完全取决于集合的同构类别。这类似于Gelfand-Kolmogorov定理的$ C(k)$。在本文中,我们定义了一个紧凑型套装的家族,其中包括有限的凸曲线工会,并表明该家族具有“ gelfand-kolmogorov”的财产。
For certain families of compact subsets of the plane, the isomorphism class of the algebra of absolutely continuous functions on a set is completely determined by the homeomorphism class of the set. This is analogous to the Gelfand--Kolmogorov theorem for $C(K)$ spaces. In this paper we define a family of compact sets comprising finite unions of convex curves and show that this family has the `Gelfand--Kolmogorov' property.