论文标题

Hitchin品种的差异操作员

Differential operators on Hitchin variety

论文作者

Singh, Anoop

论文摘要

我们在$ \ c $上介绍了Hitchin品种的概念。让$ l $成为Hitchin品种$ x $上的Holomorphic Line Bundle。我们调查了差异操作员的所有全球截面的空间$ \ cat {d}^k(l)$和一阶差速器运算符的对称的纸质力量$ \ cat {s}^k(\ cat {d}^1(l)$ x $,并为此表示了这一点,并显示出一个差异的事物。作为一个应用程序,我们表明$ l $上的holomorphic Connections的空间$ \ cat {c}(l)$不承认任何非恒定常规功能。

We introduce the notion of Hitchin variety over $\C$. Let $L$ be a holomorphic line bundle over a Hitchin variety $X$. We investigate the space of all global sections of sheaf of differential operators $\cat{D}^k (L)$ and symmetric powers of sheaf of first order differential operators $\cat{S}^k(\cat{D}^1 (L))$ over $X$ and show that for a projective Hithcin variety both the spaces are one dimensional. As an application, we show that the space $\cat{C}(L)$ of holomorphic connections on $L$ does not admit any non-constant regular function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源