论文标题
类别$ \ Mathcal {o} $的投影和惠特克函子
Projective and Whittaker functors on category $\mathcal{O}$
论文作者
论文摘要
我们表明,可以通过将soergel和Miličić的惠特克尔(Soergel)和米利奇奇(Miličić)等价的惠特函数的翻译和$ \ nathcal $ \ nathcal的单个类别的类别撰写,可以获得惠特克(Whittaker)在BGG类别$ \ Mathcal $ \ Mathcal $ \ Mathcal {o} $中的常规函数。我们表明,惠特克函子是一个商函子,与所有投射函数和它们之间的内态性通勤。
We show that the Whittaker functor on a regular block of the BGG-category $\mathcal{O}$ of a semisimple complex Lie algebra can be obtained by composing a translation to the wall functor with Soergel and Miličić's equivalence between the category of Whittaker modules and a singular block of $\mathcal{O}$. We show that the Whittaker functor is a quotient functor that commutes with all projective functors and endomorphisms between them.