论文标题
在存在其他相互作用的情况下破坏旋转对称性的其他相互作用的模型
The Kuramoto model in presence of additional interactions that break rotational symmetry
论文作者
论文摘要
库拉莫托模型是研究自发集体同步现象的范式。我们在这里研究了库拉莫托模型的非平凡概括,包括一种明确破坏模型旋转对称性的相互作用。在惯性框架(例如,实验室框架)中,库拉莫托模型不允许固定状态,即具有所谓的kuramoto(复杂)同步参数$ z \ equiv equiv equiv reiv reiv reiv re^re^{i病} $具有时间无关的状态;请注意,独立于时间的$ z $意味着$ r $和$ψ$都是独立的,后一个事实对应于$ψ$以零频率旋转(无旋转)的状态。在这个背景中,我们要求:引入对称性的术语是否足以允许在实验室框架中存在固定状态?与原始模型相比,我们揭示了所得模型的相当丰富的相图,并存在静止和驻波阶段的存在。虽然在前者中,同步顺序参数$ r $具有独立时间的长时间值,但在后者中,订单参数的振荡行为是时间的函数,但仍产生非零和时间无关的时间平均值。我们的结果基于动态方程的数值集成以及通过调用所谓的Ott-Antonsen Ansatz对动力学的精确分析,该分析允许为订单参数得出一个减少的时间进步方程。
The Kuramoto model serves as a paradigm to study the phenomenon of spontaneous collective synchronization. We study here a nontrivial generalization of the Kuramoto model by including an interaction that breaks explicitly the rotational symmetry of the model. In an inertial frame (e.g., the laboratory frame), the Kuramoto model does not allow for a stationary state, that is, a state with time-independent value of the so-called Kuramoto (complex) synchronization order parameter $z\equiv re^{iψ}$; Note that a time-independent $z$ implies $r$ and $ψ$ both time independent, with the latter fact corresponding to a state in which $ψ$ rotates at zero frequency (no rotation). In this backdrop, we ask: Does the introduction of the symmetry-breaking term suffice to allow for the existence of a stationary state in the laboratory frame? Compared to the original model, we reveal a rather rich phase diagram of the resulting model, with the existence of both stationary and standing wave phases. While in the former the synchronization order parameter $r$ has a long-time value that is time independent, one has in the latter an oscillatory behavior of the order parameter as a function of time that nevertheless yields a non-zero and time-independent time average. Our results are based on numerical integration of the dynamical equations as well as an exact analysis of the dynamics by invoking the so-called Ott-Antonsen ansatz that allows to derive a reduced set of time-evolution equations for the order parameter.