论文标题

在生成对抗网络的潜在空间中照亮马里奥场景

Illuminating Mario Scenes in the Latent Space of a Generative Adversarial Network

论文作者

Fontaine, Matthew C., Liu, Ruilin, Khalifa, Ahmed, Modi, Jignesh, Togelius, Julian, Hoover, Amy K., Nikolaidis, Stefanos

论文摘要

生成的对抗网络(GAN)迅速成为一种无处不在的方法来生成视频游戏水平。尽管GAN产生的水平在风格上类似于人类创造的示例,但人类设计师通常希望探索甘种的生成设计空间以提取有趣的水平。但是,人类设计师发现潜在的载体不透明,宁愿沿着设计师指定的维度探索,例如敌人或障碍的数量。我们建议使用旨在优化连续空间的最先进的质量多样性算法,即具有方向变化操作员和协方差矩阵适应地图地图 - 以有效地探索GAN的潜在空间以在一组指定的游戏玩法中不同的水平。在Super Mario Bros的基准领域中,我们演示了设计师如何为系统指定游戏措施,并提取具有多种水平力学范围的高质量(可玩)水平,同时仍然保持与人类著名示例的风格相似性。一项在线用户研究表明,自动产生水平的不同力学如何影响其感知难度和外观的主观评分。

Generative adversarial networks (GANs) are quickly becoming a ubiquitous approach to procedurally generating video game levels. While GAN generated levels are stylistically similar to human-authored examples, human designers often want to explore the generative design space of GANs to extract interesting levels. However, human designers find latent vectors opaque and would rather explore along dimensions the designer specifies, such as number of enemies or obstacles. We propose using state-of-the-art quality diversity algorithms designed to optimize continuous spaces, i.e. MAP-Elites with a directional variation operator and Covariance Matrix Adaptation MAP-Elites, to efficiently explore the latent space of a GAN to extract levels that vary across a set of specified gameplay measures. In the benchmark domain of Super Mario Bros, we demonstrate how designers may specify gameplay measures to our system and extract high-quality (playable) levels with a diverse range of level mechanics, while still maintaining stylistic similarity to human authored examples. An online user study shows how the different mechanics of the automatically generated levels affect subjective ratings of their perceived difficulty and appearance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源