论文标题
与编织操作员生成W州
Generating W states with braiding operators
论文作者
论文摘要
编织操作员可用于在产品状态下创建纠缠状态,从而在拓扑和量子纠缠之间建立对应关系。这对于最大纠缠的钟声和GHz国家及其在随机的地方行动和经典交流下的同等状态而闻名,但到目前为止,W个国家的结果也丢失了。在这里,我们使用外部2组的发电机在四Q量的空间和分区代数中获得W状态,以在三个Qubit的空间中生成W状态。我们还提出了一个单一的广义杨巴克斯特操作员,该操作员将w $ _n $ state嵌入$(2N-1)$ - Qubit Space。
Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W$_n$ state in a $(2n-1)$-qubit space.