论文标题
深层网络加速器针对医疗保健和生物医学应用的硬件实施
Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications
论文作者
论文摘要
专门的深度学习(DL)加速器和神经形态处理器的出现为将深层和尖峰神经网络(SNN)算法应用于边缘的医疗保健和生物医学应用提供了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS)来开发有效的DL加速器来开发有效的DL加速器,以解决各种诊断,模式识别和信号处理中的诊断,和信号处理问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物来处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行传感器融合信号处理任务将肌电图(EMG)信号与计算机视觉结合使用来对各种硬件平台进行基准测试。在推理潜伏期和能量方面,对专用的神经形态处理器和嵌入的AI加速器进行了比较。最后,我们提供了对该领域的分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies including emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. The tutorial is augmented with case studies of the vast literature on neural network and neuromorphic hardware as applied to the healthcare domain. We benchmark various hardware platforms by performing a sensor fusion signal processing task combining electromyography (EMG) signals with computer vision. Comparisons are made between dedicated neuromorphic processors and embedded AI accelerators in terms of inference latency and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that various accelerators and neuromorphic processors introduce to healthcare and biomedical domains.