论文标题
多级数字接触跟踪
Multilevel Digital Contact Tracing
论文作者
论文摘要
数字接触跟踪在减轻爆发中起着至关重要的作用,并且为一个国家设计多级数字接触跟踪是一个开放的问题,因为分析了大量时间接触数据。我们开发了一个多级数字接触跟踪框架,该框架可以从接近性接触数据中构造动态触点图。显着地,我们将触点图的边缘标签介绍为二进制圆形接触队列,该圆形触点队列在孵化期间保持时间社交相互作用。之后,我们的算法从触点图中为给定的一组受感染的人准备了直接和间接(多级)联系人列表。最后,该算法构建了跟踪列表的感染途径。我们实施框架并使用合成和现实世界数据集验证接触跟踪过程。此外,分析表明,对于Covid-19近距离接触参数,该框架需要合理的空间和时间来创建感染途径。我们的框架可以通过更改算法的参数来应用于任何流行病扩散。
Digital contact tracing plays a crucial role in alleviating an outbreak, and designing multilevel digital contact tracing for a country is an open problem due to the analysis of large volumes of temporal contact data. We develop a multilevel digital contact tracing framework that constructs dynamic contact graphs from the proximity contact data. Prominently, we introduce the edge label of the contact graph as a binary circular contact queue, which holds the temporal social interactions during the incubation period. After that, our algorithm prepares the direct and indirect (multilevel) contact list for a given set of infected persons from the contact graph. Finally, the algorithm constructs the infection pathways for the trace list. We implement the framework and validate the contact tracing process with synthetic and real-world data sets. In addition, analysis reveals that for COVID-19 close contact parameters, the framework takes reasonable space and time to create the infection pathways. Our framework can apply to any epidemic spreading by changing the algorithm's parameters.