论文标题
WTE2中的倾斜旋转质地和量子旋转厅效应
Canted Spin Texture and Quantum Spin Hall Effect in WTe2
论文作者
论文摘要
我们报告了单层T $ _ \ text {d} $ - wte $ _2 $中的一个非常规量子旋转厅阶段,它在其他拓扑材料中表现出迄今未知功能。结构的低对称性诱导了$ Yz $平面的倾斜自旋纹理,这决定了拓扑受保护的边界状态的自旋极化。此外,旋转厅电导率被量化($ 2E^2/h $),并平行于倾斜方向进行自旋量化轴。 这些发现基于对自旋霍尔电导率张量的大规模量子模拟和在多探针几何形状中使用从第一原则方法详细阐述的逼真的紧密结合模型中的非局部电阻。 观察这种倾斜的量子自旋霍尔效应,与具有非平凡自旋极化的拓扑边缘状态有关,需要特定的实验设计,并提出了一种有趣的替代方法,以操纵拓扑材料中的自旋信息。
We report an unconventional quantum spin Hall phase in the monolayer T$_\text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, which dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.