论文标题

用于构建多边形估计的相对梯度角域中的量化

Quantization in Relative Gradient Angle Domain For Building Polygon Estimation

论文作者

Chen, Yuhao, Wu, Yifan, Xu, Linlin, Wong, Alexander

论文摘要

在遥感数据中构建足迹提取有益于许多重要的应用程序,例如城市规划和人口估计。最近,卷积神经网络(CNN)和开源高分辨率卫星建筑图像数据集的快速发展已进一步推动了自动化建筑提取的性能边界。但是,CNN方法通常会产生不精确的建筑形态,包括嘈杂的边缘和圆角。在本文中,我们利用了CNN的性能,并提出了一个模块,该模块使用建立角落的知识来创建CNN分割输出的角度和简洁的构建多边形。我们描述了一个新的变换,相对梯度角变换(RGA变换),该变换将对象轮廓从时间与空间与时间与角度相关。我们提出了一个新的形状描述符,边界取向关系集(BOR),以描述RGA域中边缘之间的角度关系,例如正交性和并行性。最后,我们开发了一个能量最小化框架,该框架利用BOR中的角度关系拉直边缘并重建锋利的角,并且所得的角落会产生多边形。实验结果表明,我们的方法优化了CNN的输出,从圆形近似值到建筑占地面积更清晰的角形状。

Building footprint extraction in remote sensing data benefits many important applications, such as urban planning and population estimation. Recently, rapid development of Convolutional Neural Networks (CNNs) and open-sourced high resolution satellite building image datasets have pushed the performance boundary further for automated building extractions. However, CNN approaches often generate imprecise building morphologies including noisy edges and round corners. In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs. We describe a new transform, Relative Gradient Angle Transform (RGA Transform) that converts object contours from time vs. space to time vs. angle. We propose a new shape descriptor, Boundary Orientation Relation Set (BORS), to describe angle relationship between edges in RGA domain, such as orthogonality and parallelism. Finally, we develop an energy minimization framework that makes use of the angle relationship in BORS to straighten edges and reconstruct sharp corners, and the resulting corners create a polygon. Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源