论文标题

神经形态处理和传感:AI向尖峰的进化进程

Neuromorphic Processing and Sensing: Evolutionary Progression of AI to Spiking

论文作者

Reiter, Philippe, Jose, Geet Rose, Bizmpikis, Spyridon, Cîrjilă, Ionela-Ancuţa

论文摘要

机器学习和深度学习应用的增加,需要更多的计算资源,以成功地满足始终相互关联的自动化世界的需求不断增长。基于峰值神经网络算法的神经形态技术有望通过对人脑的功能和尖峰进行建模,以使用计算和功率要求的一小部分来实施先进的人工智能。随着工具和平台的扩散,可以帮助数据科学家和机器学习工程师开发人工和深层神经网络中最新的创新,因此向新范式的过渡将需要从当前良好的基础中建立。本文解释了基于尖峰的神经形态技术的理论工作,并概述了硬件处理器,软件平台和神经形态传感设备中的最新工作。为当前的机器学习专家铺平了进度路径,以更新其技能,以及从当前一代深度神经网络到SNN的分类或预测模型。这可以通过利用Spinnaker和Nengo Migration Toolkit的形式利用现有的专业硬件来实现。共享将VGG-16神经网络转换为SNN的第一手实验结果。向工业,医学和商业应用的远景目光,可以轻松地从SNN中受益,将这项调查结束了神经塑态计算的未来。

The increasing rise in machine learning and deep learning applications is requiring ever more computational resources to successfully meet the growing demands of an always-connected, automated world. Neuromorphic technologies based on Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements by modeling the functioning, and spiking, of the human brain. With the proliferation of tools and platforms aiding data scientists and machine learning engineers to develop the latest innovations in artificial and deep neural networks, a transition to a new paradigm will require building from the current well-established foundations. This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices. A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs. This can be achieved by leveraging existing, specialized hardware in the form of SpiNNaker and the Nengo migration toolkit. First-hand, experimental results of converting a VGG-16 neural network to an SNN are shared. A forward gaze into industrial, medical and commercial applications that can readily benefit from SNNs wraps up this investigation into the neuromorphic computing future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源