论文标题
在开放社区上无冲突着色的组合界限
Combinatorial Bounds for Conflict-free Coloring on Open Neighborhoods
论文作者
论文摘要
在无向图$ g $中,与开放社区的无冲突着色(由CFON颜色表示)是向顶点的颜色分配,使每个顶点在其开放式邻域中都具有独特的颜色顶点。 $ g $的CFON着色所需的最小颜色数是$ g $的CFON色度数,由$χ_{on}(g)$表示。 询问$χ_{on}(g)\ leq k $是否为np complete的决策问题。我们获得以下结果: * Bodlaender,Kolay和Pieterse [WADS 2019]显示了上限$χ_{on}(g)\ leq {\ sf fvs}(g)+3 $,其中$ {\ sf fvs}(g)$表示$ g $的最小反馈Verte套装的大小。我们显示了$χ_{on}(g)(g)\ leq {\ sf fvs}(g)+2 $的改进的界限,这很紧,从而在上面的论文中回答了一个空旷的问题。 *我们研究$χ_{on}(g)$与图$ g $的路径(表示$ {\ sf pw}(g)$之间的关系。 WADS 2019的上面论文显示了上限$χ_{on}(g)\ leq 2 {\ sf tw}(g)(g)+1 $其中$ {\ sf tw}(g)$代表$ g $的树宽。这意味着$χ_{on}(g)\ leq 2 {\ sf pw}(g)+1 $的上限。我们显示了$χ_{on}(g)\ leq \ lfloor \ frac {5} {3} {3}({\ sf pw}(g)+1)\ rfloor $的改进限制。 *对于$χ_{on}(g)$,我们证明了与结构参数的邻域多样性和聚类距离的新界限,从而改善了现有结果。 *我们还研究了CFON着色问题的部分着色变体,该变体可以使顶点未彩色。令$χ^*_ {on}(g)$根据此变体表示颜色$ g $所需的最小颜色数。 Abel等。 al。 [Sidma 2018]表明$χ^*_ {on}(g)\ leq 8 $当$ g $是平面时。他们询问平面图是否足以少的颜色就足够了。我们通过证明所有平面$ g $的$χ^*_ {on}(g)\ leq 5 $来回答这个问题。 我们所有的界限都是建设性算法程序的结果。
In an undirected graph $G$, a conflict-free coloring with respect to open neighborhoods (denoted by CFON coloring) is an assignment of colors to the vertices such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for a CFON coloring of $G$ is the CFON chromatic number of $G$, denoted by $χ_{ON}(G)$. The decision problem that asks whether $χ_{ON}(G) \leq k$ is NP-complete. We obtain the following results: * Bodlaender, Kolay and Pieterse [WADS 2019] showed the upper bound $χ_{ON}(G)\leq {\sf fvs}(G)+3$, where ${\sf fvs}(G)$ denotes the size of a minimum feedback vertex set of $G$. We show the improved bound of $χ_{ON}(G)\leq {\sf fvs}(G)+2$, which is tight, thereby answering an open question in the above paper. * We study the relation between $χ_{ON}(G)$ and the pathwidth of the graph $G$, denoted ${\sf pw}(G)$. The above paper from WADS 2019 showed the upper bound $χ_{ON}(G) \leq 2{\sf tw}(G)+1$ where ${\sf tw}(G)$ stands for the treewidth of $G$. This implies an upper bound of $χ_{ON}(G) \leq 2{\sf pw}(G)+1$. We show an improved bound of $χ_{ON}(G) \leq \lfloor \frac{5}{3}({\sf pw}(G)+1) \rfloor$. * We prove new bounds for $χ_{ON}(G)$ with respect to the structural parameters neighborhood diversity and distance to cluster, improving existing results. * We also study the partial coloring variant of the CFON coloring problem, which allows vertices to be left uncolored. Let $χ^*_{ON}(G)$ denote the minimum number of colors required to color $G$ as per this variant. Abel et. al. [SIDMA 2018] showed that $χ^*_{ON}(G) \leq 8$ when $G$ is planar. They asked if fewer colors would suffice for planar graphs. We answer this question by showing that $χ^*_{ON}(G) \leq 5$ for all planar $G$. All our bounds are a result of constructive algorithmic procedures.