论文标题

差分级代数和复杂的拉格朗日submanifolds的形式

Formality of differential graded algebras and complex Lagrangian submanifolds

论文作者

Mladenov, Borislav

论文摘要

令$ i:\ mathrm {l} \ hookrightArrow \ mathrm {x} $是全体形状符号变量中的紧凑型kählerlagrangian $ \ mathrm {x}/\ mathbf {c} $。我们使用变形量数来表明内态差异分级代数$ \ MATHRM {RHOM} \ big(I _*\ Mathrm {k} _ \ Mathrm {l}^{l}^{1/2} {1/2}我们证明了对Lagrangians成对的概括,以及有关$ \ Mathrm {a} _ \ infty $ -Modules家族中形式的行为的辅助结果。

Let $i: \mathrm{L} \hookrightarrow \mathrm{X}$ be a compact Kähler Lagrangian in a holomorphic symplectic variety $\mathrm{X}/\mathbf{C}$. We use deformation quantisation to show that the endomorphism differential graded algebra $\mathrm{RHom}\big(i_*\mathrm{K}_\mathrm{L}^{1/2},i_*\mathrm{K}_\mathrm{L}^{1/2}\big)$ is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of $\mathrm{A}_\infty$-modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源