论文标题
等离心模式:CMB功率谱和双光谱的联合分析
Isocurvature modes: joint analysis of the CMB power spectrum and bispectrum
论文作者
论文摘要
我们对CMB温度和极化各向异性的功率光谱和双光谱进行联合分析,以改善同位外观模式的约束。我们为现有的Planck数据构建了联合可能性,并为未来的Litebird和CMB-S4实验进行预测。我们假设具有五个自由参数的一般两场通货膨胀模型,导致一种与绝热模式任意相关的同化模式(可以是CDM密度,中微子密度或中微子速度)。从理论上讲,我们可以预期(检测和/或固定参数的)改进的情况,以指导我们随后的数值分析。我们发现,对于既未检测到等异神经模式也不是原始非高斯性的普朗克,联合分析并不能改善一般情况下的约束。但是,如果我们固定模型中的其他参数,则改进可以根据所选参数值高度显着。对于LiteBird+CMB-S4,我们研究了与Planck结果兼容的参数空间区域的关节分析将改善检测的约束或显着性。我们发现,尽管对于CDM等效性,该区域很小,对于中微子等外科模式而言,它更大了。特别是对于中微子速度,它可能是普朗克允许区域的一半,在该区域中,关节分析将等效性误差线降低了70%。此外,联合分析还可以改善某些标准宇宙学参数的误差线,例如,对于$θ_{mc} $,例如,通过与绝热和等异神经模式之间的相关参数打破归化性参数,最多可提高30%。
We perform a joint analysis of the power spectrum and the bispectrum of the CMB temperature and polarization anisotropies to improve the constraints on isocurvature modes. We construct joint likelihoods, both for the existing Planck data, and to make forecasts for the future LiteBIRD and CMB-S4 experiments. We assume a general two-field inflation model with five free parameters, leading to one isocurvature mode (which can be CDM density, neutrino density or neutrino velocity) arbitrarily correlated with the adiabatic mode. We theoretically assess in which cases (of detecting and/or fixing parameters) improvements can be expected, to guide our subsequent numerical analyses. We find that for Planck, which detected neither isocurvature modes nor primordial non-Gaussianity, the joint analysis does not improve the constraints in the general case. However, if we fix additional parameters in the model, the improvements can be highly significant depending on the chosen parameter values. For LiteBIRD+CMB-S4 we study in which regions of parameter space compatible with the Planck results the joint analysis will improve the constraints or the significance of a detection. We find that, while for CDM isocurvature this region is very small, for the neutrino isocurvature modes it is much larger. In particular for neutrino velocity it can be about half of the Planck-allowed region, where the joint analysis reduces the isocurvature error bars by up to 70%. In addition the joint analysis can also improve the error bars of some of the standard cosmological parameters, by up to 30% for $θ_{MC}$ for example, by breaking the degeneracies with the correlation parameter between adiabatic and isocurvature modes.