论文标题
大图中基于桁架的结构多样性搜索
Truss-based Structural Diversity Search in Large Graphs
论文作者
论文摘要
个人做出的社会决定很容易受到社会社区信息的影响。社会传染的关键预测指标是个人接触社区内部的多种社会环境,称为结构多样性。但是,现有模型在分析大规模网络方面具有有限的可分解性,并且遭受了社会环境多样性的不准确反映。在本文中,我们提出了一个新的基于桁架的结构多样性模型,以克服弱的可分解性。基于此模型,我们研究了图G中基于桁架的结构多样性搜索的新问题,也就是说,找到具有最高桁架的结构多样性并返回其社会环境的R顶点。哦,解决这个问题,我们提出了$ o(ρ(m+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathcal {t} $)的在线结构多样性搜索算法,其中$ρ$,$ m $和$ \ Mathcal {t} $是支架性的,是边缘的数量,以及$ g $ $ g $的triangles数量。为了提高效率,我们设计了一个优雅而紧凑的索引,称为TSD索引,以进一步加快搜索过程。我们将TSD索引的结构进一步优化到高度压缩的GCT索引中。我们基于GCT索引的结构多样性搜索利用了全球三角信息来进行快速索引构建,并以$ O(M)$时间找到答案。广泛的实验证明了针对最新方法,我们提出的模型和算法的有效性和效率。
Social decisions made by individuals are easily influenced by information from their social neighborhoods. A key predictor of social contagion is the multiplicity of social contexts inside the individual's contact neighborhood, which is termed structural diversity. However, the existing models have limited decomposability for analyzing large-scale networks, and suffer from the inaccurate reflection of social context diversity. In this paper, we propose a new truss-based structural diversity model to overcome the weak decomposability. Based on this model, we study a novel problem of truss-based structural diversity search in a graph G, that is, to find the r vertices with the highest truss-based structural diversity and return their social contexts. o tackle this problem, we propose an online structural diversity search algorithm in $O(ρ(m+\mathcal{T}))$ time, where $ρ$, $m$, and $\mathcal{T}$ are respectively the arboricity, the number of edges, and the number of triangles in $G$. To improve the efficiency, we design an elegant and compact index, called TSD-index, for further expediting the search process. We further optimize the structure of TSD-index into a highly compressed GCT-index. Our GCT-index-based structural diversity search utilizes the global triangle information for fast index construction and finds answers in $O(m)$ time. Extensive experiments demonstrate the effectiveness and efficiency of our proposed model and algorithms, against state-of-the-art methods.