论文标题

从任务调整到隐私众包平台中的任务分配

From Task Tuning to Task Assignment in Privacy-Preserving Crowdsourcing Platforms

论文作者

Duguépéroux, Joris, Allard, Tristan

论文摘要

众包平台的专业工人概况可能包含大量识别且可能敏感的个人信息(例如,个人喜好,技能,可用插槽,可用设备),引起了强烈的隐私问题。这导致了保护隐私的众包平台的设计,旨在实现有效的人群化流程,同时即使平台不完全信任,也可以提供强大的隐私保证。在本文中,我们提出了两项​​贡献。首先,我们提出了PKD算法,目的是支持在保护隐私的众包平台内进行各种工人概况的总体用法。 PKD算法将同质加密和差异隐私与计算(扰动)分区的差异隐私相结合,用于实际工人人群的多维技能和每个分区工人的(扰动)工人计数。其次,我们建议从私人信息检索技术的最新进展中受益,以设计既私人又负担得起的任务分配解决方案。我们对使用PIR技术向工人提出任务的问题进行了深入的研究,表明它是NP-HARD,并提出了PKD PIR填料启发式启发式,该启发式将根据PKD算法的分配输出组合在一起。简而言之,我们设计了PKD算法和PKD PIR包装启发式,我们证明了他们针对诚实但热情好奇的工人和/或平台的正式安全性,我们分析了它们的复杂性,我们通过合成和现实的数据集合进行了广泛的实验,证明了它们在现实生活中的质量和可负担性。

Specialized worker profiles of crowdsourcing platforms may contain a large amount of identifying and possibly sensitive personal information (e.g., personal preferences, skills, available slots, available devices) raising strong privacy concerns. This led to the design of privacy-preserving crowdsourcing platforms, that aim at enabling efficient crowd-sourcing processes while providing strong privacy guarantees even when the platform is not fully trusted. In this paper, we propose two contributions. First, we propose the PKD algorithm with the goal of supporting a large variety of aggregate usages of worker profiles within a privacy-preserving crowdsourcing platform. The PKD algorithm combines together homomorphic encryption and differential privacy for computing (perturbed) partitions of the multi-dimensional space of skills of the actual population of workers and a (perturbed) COUNT of workers per partition. Second, we propose to benefit from recent progresses in Private Information Retrieval techniques in order to design a solution to task assignment that is both private and affordable. We perform an in-depth study of the problem of using PIR techniques for proposing tasks to workers, show that it is NP-Hard, and come up with the PKD PIR Packing heuristic that groups tasks together according to the partitioning output by the PKD algorithm. In a nutshell, we design the PKD algorithm and the PKD PIR Packing heuristic, we prove formally their security against honest-but-curious workers and/or platform, we analyze their complexities, and we demonstrate their quality and affordability in real-life scenarios through an extensive experimental evaluation performed over both synthetic and realistic datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源