论文标题

无线传感器网络中信息时代限制动态控制的功率最小化

Power Minimization for Age of Information Constrained Dynamic Control in Wireless Sensor Networks

论文作者

Moltafet, Mohammad, Leinonen, Markus, Codreanu, Marian, Pappas, Nikolaos

论文摘要

我们考虑一个系统,多个传感器将有关各种随机过程的及时信息传达给水槽。传感器共享正交子通道,以状态更新数据包的形式传输此类信息。中央控制器可以控制传感器的采样动作,以在传输功耗和信息新鲜度(AOI)量化的信息新鲜度之间进行权衡。我们共同优化每个传感器的采样动作,发射功率分配和子渠道分配,以最大程度地减少每个传感器的平均总发射功率,但每个传感器的平均AOI限制受到最大平均限制。为了解决该问题,我们使用Lyapunov漂移加度方法开发了动态控制算法,并提供了算法的最佳分析。根据Lyapunov Drift-Plus-Penalty方法,为了解决主要问题,我们需要在每个时间插槽中解决一个优化问题,这是一个混合整数非凸优化问题。我们为这个每插曲的优化问题提出了一个低复杂性的次级优化解决方案,该解决方案提供了近乎最佳的性能,并评估了解决方案的计算复杂性。数值结果说明了所提出的动态控制算法的性能以及针对每插槽优化问题的次级最佳解决方案的性能与系统的不同参数。结果表明,与基线策略相比,提出的动态控制算法可在平均发射功率中节省超过$ 60〜%$ $。

We consider a system where multiple sensors communicate timely information about various random processes to a sink. The sensors share orthogonal sub-channels to transmit such information in the form of status update packets. A central controller can control the sampling actions of the sensors to trade-off between the transmit power consumption and information freshness which is quantified by the Age of Information (AoI). We jointly optimize the sampling action of each sensor, the transmit power allocation, and the sub-channel assignment to minimize the average total transmit power of all sensors subject to a maximum average AoI constraint for each sensor. To solve the problem, we develop a dynamic control algorithm using the Lyapunov drift-plus-penalty method and provide optimality analysis of the algorithm. According to the Lyapunov drift-plus-penalty method, to solve the main problem we need to solve an optimization problem in each time slot which is a mixed integer non-convex optimization problem. We propose a low-complexity sub-optimal solution for this per-slot optimization problem that provides near-optimal performance and we evaluate the computational complexity of the solution. Numerical results illustrate the performance of the proposed dynamic control algorithm and the performance of the sub-optimal solution for the per-slot optimization problems versus the different parameters of the system. The results show that the proposed dynamic control algorithm achieves more than $60~\%$ saving in the average total transmit power compared to a baseline policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源