论文标题

Strichartz在圆锥形奇异空间中klein-gordon方程的估计值

Strichartz estimates for the Klein-Gordon equation in a conical singular space

论文作者

Ben-Artzi, Jonathan, Cacciafesta, Federico, de Suzzoni, Anne-Sophie, Zhang, Junyong

论文摘要

考虑一个圆锥形的奇异空间$ x = c(y)=(0,\ infty)_r \ times y $,带公制$ g = \ mathrm {d} r^2+r^2H $,其中cross $ y $是紧凑型$(n-1)$(n-1)$ - 尺寸 - 尺寸封闭riemannian riemannian riemannian cormannian cormannian cormold $(y,y,h)$。我们研究了$ x $中具有逆向潜力的Klein-Gordon方程,在这种情况下特别证明了尤其是全球时间的Strichartz估计。

Consider a conical singular space $X=C(Y)=(0,\infty)_r\times Y$ with the metric $g=\mathrm{d}r^2+r^2h$, where the cross section $Y$ is a compact $(n-1)$-dimensional closed Riemannian manifold $(Y,h)$. We study the Klein-Gordon equations with inverse-square potentials in the space $X$, proving in particular global-in-time Strichartz estimates in this setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源