论文标题
Strichartz在圆锥形奇异空间中klein-gordon方程的估计值
Strichartz estimates for the Klein-Gordon equation in a conical singular space
论文作者
论文摘要
考虑一个圆锥形的奇异空间$ x = c(y)=(0,\ infty)_r \ times y $,带公制$ g = \ mathrm {d} r^2+r^2H $,其中cross $ y $是紧凑型$(n-1)$(n-1)$ - 尺寸 - 尺寸封闭riemannian riemannian riemannian cormannian cormannian cormold $(y,y,h)$。我们研究了$ x $中具有逆向潜力的Klein-Gordon方程,在这种情况下特别证明了尤其是全球时间的Strichartz估计。
Consider a conical singular space $X=C(Y)=(0,\infty)_r\times Y$ with the metric $g=\mathrm{d}r^2+r^2h$, where the cross section $Y$ is a compact $(n-1)$-dimensional closed Riemannian manifold $(Y,h)$. We study the Klein-Gordon equations with inverse-square potentials in the space $X$, proving in particular global-in-time Strichartz estimates in this setting.