论文标题

学习使用不确定的拓扑图计划

Learning to plan with uncertain topological maps

论文作者

Beeching, Edward, Dibangoye, Jilles, Simonin, Olivier, Wolf, Christian

论文摘要

我们使用分层策略在3D环境中训练代理在3D环境中导航,包括基于高级图的计划者和本地策略。我们的主要贡献是一种基于数据驱动的学习方法,用于在拓扑图中的不确定性下进行计划,需要在具有概率结构的有价值图中估算最短路径。尽管经典的符号算法在具有概率结构的图表上以概率意义上的概率意义获得最佳的结果,但我们的目的是表明,机器学习可以考虑丰富的高维节点特征,例如可在映射的每个位置可用的可视信息来克服图中缺少信息。与纯粹学到的神经白盒算法相比,我们以基于动态编程的最短路径算法的感应偏见来构建神经模型,并且我们表明,神经模型的特定参数化对应于Bellman-Ford算法。通过对模拟照片现实的3D环境中的方法进行经验分析,我们证明了将视觉特征包含在学习的神经计划者中,优于基于图的计划的经典符号解决方案。

We train an agent to navigate in 3D environments using a hierarchical strategy including a high-level graph based planner and a local policy. Our main contribution is a data driven learning based approach for planning under uncertainty in topological maps, requiring an estimate of shortest paths in valued graphs with a probabilistic structure. Whereas classical symbolic algorithms achieve optimal results on noise-less topologies, or optimal results in a probabilistic sense on graphs with probabilistic structure, we aim to show that machine learning can overcome missing information in the graph by taking into account rich high-dimensional node features, for instance visual information available at each location of the map. Compared to purely learned neural white box algorithms, we structure our neural model with an inductive bias for dynamic programming based shortest path algorithms, and we show that a particular parameterization of our neural model corresponds to the Bellman-Ford algorithm. By performing an empirical analysis of our method in simulated photo-realistic 3D environments, we demonstrate that the inclusion of visual features in the learned neural planner outperforms classical symbolic solutions for graph based planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源