论文标题

在有限估值环上的三变量扩展器上

On three-variable expanders over finite valuation rings

论文作者

Van The, Nguyen, Tran, Phuc D, Ham, Le Quang, Vinh, Le Anh

论文摘要

令$ \ mathcal {r} $为订单$ q^r $的有限估值环。在本文中,我们证明,对于任何二次多项式$ f(x,x,y,z)\ in \ mathcal {r} [x,x,y,z] $,它是$ $ axy+axy+axy+r(x)+s(y)+s(y)+t(z)$,用于某些一个可差的polynomials $ r,s,s,s,s,s,t $对于任何$ a,b,c \ subset \ subset \ mathcal {r} $。我们还研究了有限估值环$ \ mathcal {r}的总和类型问题。 \ gg q^{r-1/3} $然后$$ \ max \ {| a \ cdot a |,| a^d + a^d | \},\ max \ max \ {| a + a |,| a^2 + a^2 + a^2 | \ \} | a |^{2/3} q^{r/3},$$和$ | f(a) + a | \ gg | a |^{2/3} q^{r/3} $对于任何一个变量二次多项式$ f $。

Let $\mathcal{R}$ be a finite valuation ring of order $q^r$. In this paper, we prove that for any quadratic polynomial $f(x,y,z) \in \mathcal{R}[x,y,z]$ that is of the form $axy+R(x)+S(y)+T(z)$ for some one-variable polynomials $R, S , T$, we have \[ |f(A,B,C)| \gg \min\left\{ q^r, \frac{|A||B||C|}{q^{2r-1}}\right\}\] for any $A, B, C \subset \mathcal{R}$. We also study the sum-product type problems over finite valuation ring $\mathcal{R}.$ More precisely, we show that for any $A \subset \mathcal{R}$ with $|A| \gg q^{r-1/3}$ then $$\max\{ |A \cdot A|, |A^d + A^d|\},\max\{ |A + A|, |A^2 + A^2|\},\max\{|A-A|,|AA+AA|\} \gg |A|^{2/3}q^{r/3},$$ and $|f(A) + A| \gg |A|^{2/3}q^{r/3}$ for any one variable quadratic polynomial $f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源