论文标题
使用漫射界面方法和快速矩阵向量产物的汇总多层图的半监督学习
Semi-supervised Learning for Aggregated Multilayer Graphs Using Diffuse Interface Methods and Fast Matrix Vector Products
论文作者
论文摘要
我们将基于图形的多类半监督分类技术概括为基于分散界面方法的多层图。除了使用固有的多层结构的各种应用处理外,我们提出了一种非常灵活的方法,该方法在低维多层图表示中解释了高维数据。涉及相应差异图操作员光谱分解以及基于无需速度的快速傅立叶变换(NFFT)的快速矩阵矢量产物的高效数值方法,可以快速处理大型和高维数据集。我们执行各种数值测试,将图像分割特别关注。特别是,我们在数据集上测试方法的性能,每层最多1000万个节点以及最多104个维度,导致图形最多52层。尽管所有提出的数值实验都可以在平均笔记本电脑计算机上运行,但在我们算法的所有阶段,运行时的线性依赖性依赖性依赖性依赖性,使其可扩展到更大且更高维度的问题。
We generalize a graph-based multiclass semi-supervised classification technique based on diffuse interface methods to multilayer graphs. Besides the treatment of various applications with an inherent multilayer structure, we present a very flexible approach that interprets high-dimensional data in a low-dimensional multilayer graph representation. Highly efficient numerical methods involving the spectral decomposition of the corresponding differential graph operators as well as fast matrix-vector products based on the nonequispaced fast Fourier transform (NFFT) enable the rapid treatment of large and high-dimensional data sets. We perform various numerical tests putting a special focus on image segmentation. In particular, we test the performance of our method on data sets with up to 10 million nodes per layer as well as up to 104 dimensions resulting in graphs with up to 52 layers. While all presented numerical experiments can be run on an average laptop computer, the linear dependence per iteration step of the runtime on the network size in all stages of our algorithm makes it scalable to even larger and higher-dimensional problems.