论文标题
持续适应深立体声
Continual Adaptation for Deep Stereo
论文作者
论文摘要
立体声图像的深度估计是通过端到端训练的卷积神经网络进行了无与伦比的结果,以回归密集的差异。像大多数任务一样,如果可以培训大量标记的样本,则可能涵盖部署时间遇到的整个数据分发,这是可能的。作为在实际应用程序中有系统地尚未达到的假设,适应任何看不见的设置的能力至关重要。目的是,我们为深层立体声网络提出了一个持续的适应范式,旨在应对具有挑战性和不断变化的环境。我们设计了一个轻巧和模块化的体系结构,模块化自适应网络(MADNET),并制定模块化适应算法(MAD,MAD ++),可有效优化整个网络的独立子部分。在我们的范式中,可以通过向右的图像扭曲或传统的立体声算法从自我划分中不断适应在线模型所需的学习信号。对于两个来源,除了在部署时间收集的输入图像以外,没有其他数据。因此,我们的网络体系结构和适应算法实现了第一个实时自适应深度立体声系统,并为新的范式铺平了道路,该范式可以促进实际部署端到端架构,以实现严重的差异回归。
Depth estimation from stereo images is carried out with unmatched results by convolutional neural networks trained end-to-end to regress dense disparities. Like for most tasks, this is possible if large amounts of labelled samples are available for training, possibly covering the whole data distribution encountered at deployment time. Being such an assumption systematically unmet in real applications, the capacity of adapting to any unseen setting becomes of paramount importance. Purposely, we propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments. We design a lightweight and modular architecture, Modularly ADaptive Network (MADNet), and formulate Modular ADaptation algorithms (MAD, MAD++) which permit efficient optimization of independent sub-portions of the entire network. In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms. With both sources, no other data than the input images being gathered at deployment time are needed. Thus, our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system and pave the way for a new paradigm that can facilitate practical deployment of end-to-end architectures for dense disparity regression.