论文标题

电池充电时间模型,用于可重构智能表面辅助无线电源传输系统

Battery Recharging Time Models for Reconfigurable Intelligent Surface-Assisted Wireless Power Transfer Systems

论文作者

Mohjazi, Lina, Muhaidat, Sami, Abbasi, Qammer H., Imran, Muhammad Ali, Dobre, Octavia A., Di Renzo, Marco

论文摘要

在本文中,我们开发了一个分析框架,用于对可重构智能表面(RISS)辅助无线电源(WPT)系统的电池充电时间(BRT)进行统计分析。具体而言,我们得出了概率密度函数(PDF),累积分布函数以及射频能量收集无线节点的BRT的概率函数的新型闭合形式表达式。此外,在两个特殊情况下,获得了BRT的PDF的闭合形式表达式:i)当RIS配备一个反射元件(RE)时,RIS由大量RES组成时。利用派生表达式,我们为BRT的统计表征提供了全面的处理,并研究了系统和电池参数对其性能的影响。我们的结果表明,提出的统计模型在评估RIS辅助WPT网络的可持续性以及为大规模的未来无线应用程序提供关键的设计见解方面是可分析,准确且有效的。例如,我们证明,通过将RIS元素的数量增加一倍,可以实现BRT的平均时间4倍。蒙特卡洛模拟结果证实了所提出的理论框架的准确性。

In this paper, we develop an analytical framework for the statistical analysis of the battery recharging time (BRT) in reconfigurable intelligent surfaces (RISs) aided wireless power transfer (WPT) systems. Specifically, we derive novel closed-form expressions for the probability density function (PDF), cumulative distribution function, and moments of the BRT of the radio frequency energy harvesting wireless nodes. Moreover, closed-form expressions of the the PDF of the BRT is obtained for two special cases: i) when the RIS is equipped with one reflecting element (RE), ii) when the RIS consists of a large number of REs. Capitalizing on the derived expressions, we offer a comprehensive treatment for the statistical characterization of the BRT and study the impact of the system and battery parameters on its performance. Our results reveal that the proposed statistical models are analytically tractable, accurate, and efficient in assessing the sustainability of RIS-assisted WPT networks and in providing key design insights for large-scale future wireless applications. For example, we demonstrate that a 4-fold reduction in the mean time of the BRT can be achieved by doubling the number of RIS elements. Monte Carlo simulation results corroborate the accuracy of the proposed theoretical framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源