论文标题

在统一的Shimura曲线的P-ADIC统一上

On the p-adic uniformization of unitary Shimura curves

论文作者

Kudla, Stephen, Rapoport, Michael, Zink, Thomas

论文摘要

我们证明,与任意的CM Field $ K $相对于Maximal Altermal Alter Real Subfield $ f $,对某些二进制偏差的Hermitian Spaces $ V $的统一相似的Shimura曲线的$ P $均匀化。对于一个不在$ k $中分开的$ v | p $ $ f $的$ v | p $,对于$ v_v $是各向异性的,让$ν$是$ v $的扩展为$ v $。我们通过$ {\ rm spec} \,o_ {e,(ν)} $在相应的shimura曲线的积分模型中,通过对具有适当极化和级别结构为$ p $的阿贝尔方案的模量问题。模量问题的配方涉及Kottwitz条件,Eisenstein条件和调整后的不变性。前两个条件是阿贝尔品种的谎言代数的条件。最后一个条件是偏振形式的条件。该模型正式完成沿其特殊光纤的统一化是按照正式的德林菲尔德上半平面以$ f_v $进行的。 The proof relies on the construction of the contracting functor which relates a relative Rapoport-Zink space for strict formal $O_{F_v}$-modules with a Rapoport-Zink space of $p$-divisible groups which arise from the moduli problem, where the $O_{F_v}$-action is usually not strict when $F_v\ne \mathbb {Q}_p$.我们的主要工具是显示的理论,尤其是AHSENDORF函数。

We prove $p$-adic uniformization for Shimura curves attached to the group of unitary similitudes of certain binary skew hermitian spaces $V$ with respect to an arbitrary CM field $K$ with maximal totally real subfield $F$. For a place $v|p$ of $F$ that is not split in $K$ and for which $V_v$ is anisotropic, let $ν$ be an extension of $v$ to the reflex field $E$. We define an integral model of the corresponding Shimura curve over ${\rm Spec}\, O_{E, (ν)}$ by means of a moduli problem for abelian schemes with suitable polarization and level structure prime to $p$. The formulation of the moduli problem involves a Kottwitz condition, an Eisenstein condition, and an adjusted invariant. The first two conditions are conditions on the Lie algebra of the abelian varieties; the last condition is a condition on the Riemann form of the polarization. The uniformization of the formal completion of this model along its special fiber is given in terms of the formal Drinfeld upper half plane for $F_v$. The proof relies on the construction of the contracting functor which relates a relative Rapoport-Zink space for strict formal $O_{F_v}$-modules with a Rapoport-Zink space of $p$-divisible groups which arise from the moduli problem, where the $O_{F_v}$-action is usually not strict when $F_v\ne \mathbb {Q}_p$. Our main tool is the theory of displays, in particular the Ahsendorf functor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源