论文标题

在(in) - 组合买家的贝叶斯收入最大化

On the (in)-approximability of Bayesian Revenue Maximization for a Combinatorial Buyer

论文作者

Collina, Natalie, Weinberg, S. Matthew

论文摘要

我们认为,收入最大化的单卖商,将$ M $物品出售给单个买家,其价值$ v(\ cdot)$是从已知的分配$ d $ dupport $ k $中获取的。 Cai等人的一系列作品。确定,当每个$ v(\ cdot)$支持$ d $的每个$ v $是加法或单位听点(或$ c $ - 按需)时,可以在$ \ operatorname {poly}(m,k)$ time中找到收入最佳拍卖。 我们表明,甚至超出了这一点,即使是基于基质的估值(合适的总替代品)也导致了近似的强硬度。具体而言,即使在$ M $项目和$ k \ leq m $支持$ d $的情况下,也无法实现$ 1/m^{1- \ varepsilon} $ - 对于任何$ \ varepsilon> 0 $的近似值,即在基于Matroid的n np(随机)$(随机)$(随机性)$(随机性)$(随机性)多个$(除非$ 1/k $ -Approximation是微不足道的)。 Cai等人的主要技术贡献是从收入最大化$ \ Mathcal {v} $中的收入最大化,以优化类$ \ Mathcal {V} $中的两个值之间的差异。我们的主要技术贡献是在另一个方向(对于广泛的估值类别)上的黑盒减少,确定其减少基本上是紧张的。

We consider a revenue-maximizing single seller with $m$ items for sale to a single buyer whose value $v(\cdot)$ for the items is drawn from a known distribution $D$ of support $k$. A series of works by Cai et al. establishes that when each $v(\cdot)$ in the support of $D$ is additive or unit-demand (or $c$-demand), the revenue-optimal auction can be found in $\operatorname{poly}(m,k)$ time. We show that going barely beyond this, even to matroid-based valuations (a proper subset of Gross Substitutes), results in strong hardness of approximation. Specifically, even on instances with $m$ items and $k \leq m$ valuations in the support of $D$, it is not possible to achieve a $1/m^{1-\varepsilon}$-approximation for any $\varepsilon>0$ to the revenue-optimal mechanism for matroid-based valuations in (randomized) poly-time unless NP $\subseteq$ RP (note that a $1/k$-approximation is trivial). Cai et al.'s main technical contribution is a black-box reduction from revenue maximization for valuations in class $\mathcal{V}$ to optimizing the difference between two values in class $\mathcal{V}$. Our main technical contribution is a black-box reduction in the other direction (for a wide class of valuation classes), establishing that their reduction is essentially tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源