论文标题

在神经网络中重新访问一vs的所有分类器,以进行预测不确定性和分布式检测

Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks

论文作者

Padhy, Shreyas, Nado, Zachary, Ren, Jie, Liu, Jeremiah, Snoek, Jasper, Lakshminarayanan, Balaji

论文摘要

对现代神经网络中预测不确定性的准确估计对于实现良好的校准预测和检测分布(OOD)输入至关重要。最有希望的方法主要集中在改善模型不确定性(例如深层合奏和贝叶斯神经网络)和用于OOD检测的后处理技术(例如Odin和Mahalanobis距离)。然而,对判别分类器中概率的参数化如何影响不确定性估计值,而主要的方法(SoftMax跨透明镜)对OOD数据和协变量转移下的误解,对差异分类器的参数化如何影响不确定性的估计。我们研究了使用(1)单一的所有公式来捕获“无上述”概念的替代方法,以捕获“无上述”的概念,以及(2)基于距离的logit表示,以编码不确定性作为距离训练歧管的距离的函数。我们表明,单VS-ALL配方可以改善图像分类任务的校准,同时匹配SoftMax的预测性能,而不会产生任何其他培训或测试时间复杂性。

Accurate estimation of predictive uncertainty in modern neural networks is critical to achieve well calibrated predictions and detect out-of-distribution (OOD) inputs. The most promising approaches have been predominantly focused on improving model uncertainty (e.g. deep ensembles and Bayesian neural networks) and post-processing techniques for OOD detection (e.g. ODIN and Mahalanobis distance). However, there has been relatively little investigation into how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates, and the dominant method, softmax cross-entropy, results in misleadingly high confidences on OOD data and under covariate shift. We investigate alternative ways of formulating probabilities using (1) a one-vs-all formulation to capture the notion of "none of the above", and (2) a distance-based logit representation to encode uncertainty as a function of distance to the training manifold. We show that one-vs-all formulations can improve calibration on image classification tasks, while matching the predictive performance of softmax without incurring any additional training or test-time complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源