论文标题
Bernoulli超平面渗透
Bernoulli Hyperplane Percolation
论文作者
论文摘要
我们研究了一个依赖的位点渗透模型,这些模型是$ n $维的欧几里得晶格,在该晶格中,整个超平面是随机独立删除的,而不是单个位置。我们扩展了有关Bernoulli线渗透的结果,表明该模型经历了非平凡的相变,并证明了从指数级向幂律衰减的过渡存在。
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model undergoes a non-trivial phase transition and proving the existence of a transition from exponential to power-law decay within some regions of the subcritical phase.