论文标题

基于空间知名的肺纹理学习的肺肺气肿的新型亚型

Novel Subtypes of Pulmonary Emphysema Based on Spatially-Informed Lung Texture Learning

论文作者

Yang, Jie, Angelini, Elsa D., Balte, Pallavi P., Hoffman, Eric A., Austin, John H. M., Smith, Benjamin M., Barr, R. Graham, Laine, Andrew F.

论文摘要

肺部肺气肿与慢性阻塞性肺疾病(COPD)大大重叠,传统上被分类为先前在尸检时鉴定出的三种亚型。在计算机断层扫描(CT)上无监督的肺气肿亚型学习为肺气肿亚型的新定义开辟了道路,并消除了需要进行彻底的手动标记。但是,基于CT的肺气肿亚型仅限于基于纹理的模式,而无需考虑空间位置。在这项工作中,我们介绍了肺部的标准化空间图,以进行定量研究肺纹理位置,并提出了一个新型框架,用于结合空间和纹理信息,以发现代表新型肺气肿亚型的空间信息的肺纹理模式(SLTP)。利用梅萨COPD和EMCAP研究的两次全肺CT扫描,我们首先表明我们的空间映射可以范围内的人群空间位置研究。然后,我们评估在Mesa COPD上发现的SLTP的特征,并表明它们是可重现的,能够编码标准的肺气肿亚型,并与生理症状相关。

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease (COPD), and is traditionally subcategorized into three subtypes previously identified on autopsy. Unsupervised learning of emphysema subtypes on computed tomography (CT) opens the way to new definitions of emphysema subtypes and eliminates the need of thorough manual labeling. However, CT-based emphysema subtypes have been limited to texture-based patterns without considering spatial location. In this work, we introduce a standardized spatial mapping of the lung for quantitative study of lung texture location, and propose a novel framework for combining spatial and texture information to discover spatially-informed lung texture patterns (sLTPs) that represent novel emphysema subtypes. Exploiting two cohorts of full-lung CT scans from the MESA COPD and EMCAP studies, we first show that our spatial mapping enables population-wide study of emphysema spatial location. We then evaluate the characteristics of the sLTPs discovered on MESA COPD, and show that they are reproducible, able to encode standard emphysema subtypes, and associated with physiological symptoms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源