论文标题
基于教师知识转移的快速光流的患者特定领域适应
Patient-Specific Domain Adaptation for Fast Optical Flow Based on Teacher-Student Knowledge Transfer
论文作者
论文摘要
快速运动反馈对于移动组织的计算机辅助手术(CAS)至关重要。安全关键视力应用中的图像辅助需要对组织运动进行密集的跟踪。这可以使用光流(OF)完成。高处理速率下的准确运动预测会导致更高的患者安全。当前对模型的深度学习显示了常见的速度与准确性权衡。为了在高处理速率下实现高精度,我们提出了快速模型的患者特异性微调。这可以最大程度地减少训练和应用数据之间的域间隙,同时将目标域降低到较低复合物模型的能力。我们建议在操作室术前获得训练序列。我们通过使用教师学习来处理缺失的地面真理。使用教师模型Flownet2的流量估计,我们在患者特异性域上专门针对快速的学生模型Flownet2s。评估是对Hamlyn数据集的序列进行的。我们的学生模型在微调后表现出很好的表现。跟踪准确性以第六倍的速度与教师模型相媲美。可以在几分钟之内进行微调,使其对于操作室可行。我们的方法允许使用以前不适合此任务的实时模型。该方法为改善CAS中患者特异性运动估计的路径奠定了道路。
Fast motion feedback is crucial in computer-aided surgery (CAS) on moving tissue. Image-assistance in safety-critical vision applications requires a dense tracking of tissue motion. This can be done using optical flow (OF). Accurate motion predictions at high processing rates lead to higher patient safety. Current deep learning OF models show the common speed vs. accuracy trade-off. To achieve high accuracy at high processing rates, we propose patient-specific fine-tuning of a fast model. This minimizes the domain gap between training and application data, while reducing the target domain to the capability of the lower complex, fast model. We propose to obtain training sequences pre-operatively in the operation room. We handle missing ground truth, by employing teacher-student learning. Using flow estimations from teacher model FlowNet2 we specialize a fast student model FlowNet2S on the patient-specific domain. Evaluation is performed on sequences from the Hamlyn dataset. Our student model shows very good performance after fine-tuning. Tracking accuracy is comparable to the teacher model at a speed up of factor six. Fine-tuning can be performed within minutes, making it feasible for the operation room. Our method allows to use a real-time capable model that was previously not suited for this task. This method is laying the path for improved patient-specific motion estimation in CAS.