论文标题

Bose-Polaron的量子动力学在A $ D $维bose Einstein冷凝水中

Quantum dynamics of Bose-polaron in a $d$-dimensional Bose Einstein condensate

论文作者

Khan, M. Miskeen, Terças, H., Mendonça, J. T., Wehr, J., Charalambous, C., Lewenstein, M., Garcia-March, M. A.

论文摘要

我们研究浸入玻色爱因斯坦凝结在任意维度中的杂质原子的量子运动。 Bose Einstein凝结物的Bogoliubov激发作用是杂质的骨浴。我们提出了描述系统量子动力学的$ d $二维langevin方程的详细推导,以及描述整个通用性中光谱密度的相关的广义张量。当杂质没有被困时,我们计算均方根位移,表明运动是超扩散的。我们还获得了小温度限制和大温度限制的超扩散系数的明确表达式。我们发现,在后一种情况下,该系数的最大值在所有维度上都是相同的。我们还研究了平均能量的行为,并比较了各个维度的结果。在被困的情况下,我们研究挤压,发现可以在较低的维度中获得更强的位置挤压。我们量化了粒子运动的非马克维亚性,并发现它随维度的增加而增加。

We study the quantum motion of an impurity atom immersed in a Bose Einstein condensate in arbitrary dimension. The Bogoliubov excitations of the Bose Einstein condensate act as a bosonic bath for the impurity. We present a detailed derivation of the $d$-dimensional Langevin equations that describe the quantum dynamics of the system, and of the associated generalized tensor that describes the spectral density in the full generality. When the impurity is not trapped, we calculate the mean square displacement, showing that the motion is super diffusive. We obtain also explicit expressions for the super diffusive coefficient in the small and large temperature limits. We find that, in the latter case, the maximal value of this coefficient is the same in all dimensions. We study also the behaviour of the average energy and compare the results for various dimensions. In the trapped case, we study squeezing and find that the stronger position squeezing can be obtained in lower dimensions. We quantify the non-Markovianity of the particle's motion, and find that it increases with dimensionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源