论文标题

pie-net:点云边缘的参数推理

PIE-NET: Parametric Inference of Point Cloud Edges

论文作者

Wang, Xiaogang, Xu, Yuelang, Xu, Kai, Tagliasacchi, Andrea, Zhou, Bin, Mahdavi-Amiri, Ali, Zhang, Hao

论文摘要

我们引入了一种端到端的可学习技术,以在3D点云数据中稳健地识别功能边缘。我们将这些边缘表示为参数曲线的集合(即线,圆圈和b-splines)。因此,我们的深神经网络创造的pie-net经过训练,用于边缘的参数推断。该网络依靠“区域提案”体系结构,在该体系结构中,第一个模块提出了一个过度完整的边缘和角点集合,第二个模块对每个提案进行排名,以决定是否应考虑在内。我们在ABC数据集上训练和评估我们的方法,这是一个大型CAD模型数据集,并将我们的结果与传统(非学习)处理管道产生的结果以及最近的基于深度学习的边缘检测器(EC-NET)进行了比较。从定量和定性的角度来看,我们的结果对最新的结果有了显着改善。

We introduce an end-to-end learnable technique to robustly identify feature edges in 3D point cloud data. We represent these edges as a collection of parametric curves (i.e.,lines, circles, and B-splines). Accordingly, our deep neural network, coined PIE-NET, is trained for parametric inference of edges. The network relies on a "region proposal" architecture, where a first module proposes an over-complete collection of edge and corner points, and a second module ranks each proposal to decide whether it should be considered. We train and evaluate our method on the ABC dataset, a large dataset of CAD models, and compare our results to those produced by traditional (non-learning) processing pipelines, as well as a recent deep learning based edge detector (EC-NET). Our results significantly improve over the state-of-the-art from both a quantitative and qualitative standpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源