论文标题
惯性测量膝关节重量锥束CT的运动补偿
Inertial Measurements for Motion Compensation in Weight-bearing Cone-beam CT of the Knee
论文作者
论文摘要
膝盖重量锥体计算机断层扫描(CT)扫描期间的非自愿运动导致重建体积的伪影,使其无法用于临床诊断。当前,采用基于图像或标记的方法来纠正此运动,但通常需要长时间执行或准备时间。我们建议将含有加速度计和陀螺仪的惯性测量单元(IMU)连接到受试者的腿上,以测量扫描过程中的运动并对其进行校正。为了验证这种方法,我们使用使用光学3D跟踪系统测量的真实运动提出了一项模拟研究。通过这种运动,在模拟的CT扫描中,XCAT数值膝关节幻影在产生运动损坏的投影过程中被不合格变形。生物力学模型具有相同的跟踪运动动画,以生成位于膝盖下方的IMU的测量值。在我们提出的多阶段算法中,这些信号被转换为CT扫描的全球坐标系,并在重建过程中申请运动补偿。我们提出的方法可以有效地减少重建体积中的运动伪像。与运动损坏的情况相比,平均结构相似性指数和根平方平方误差相对于NOMOTION病例的误差分别提高了13-21%和68-70%。这些结果在定性和定量上与我们比较我们的方法的基于最新标记的方法相等。提出的研究显示了这种新型方法的可行性,并为C-ARM CT中纯粹基于IMU的运动补偿带来了有希望的结果。
Involuntary motion during weight-bearing cone-beam computed tomography (CT) scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis. Currently, image-based or marker-based methods are applied to correct for this motion, but often require long execution or preparation times. We propose to attach an inertial measurement unit (IMU) containing an accelerometer and a gyroscope to the leg of the subject in order to measure the motion during the scan and correct for it. To validate this approach, we present a simulation study using real motion measured with an optical 3D tracking system. With this motion, an XCAT numerical knee phantom is non-rigidly deformed during a simulated CT scan creating motion corrupted projections. A biomechanical model is animated with the same tracked motion in order to generate measurements of an IMU placed below the knee. In our proposed multi-stage algorithm, these signals are transformed to the global coordinate system of the CT scan and applied for motion compensation during reconstruction. Our proposed approach can effectively reduce motion artifacts in the reconstructed volumes. Compared to the motion corrupted case, the average structural similarity index and root mean squared error with respect to the no-motion case improved by 13-21% and 68-70%, respectively. These results are qualitatively and quantitatively on par with a state-of-the-art marker-based method we compared our approach to. The presented study shows the feasibility of this novel approach, and yields promising results towards a purely IMU-based motion compensation in C-arm CT.