论文标题
通过在线三角包装过程中缩小图扎猜想中的随机图形差距
Closing the Random Graph Gap in Tuza's Conjecture Through the Online Triangle Packing Process
论文作者
论文摘要
Zsolt Tuza的一个长期猜想断言,覆盖数量$τ(g)$的三角形最多是三角形包装数字$ν(g)$,其中三角形包装数量$ $ν(g)$是一组$ g $的边缘triangles的最大尺寸,$ g $和triangle covel $ coved $ g $ copt $ g)是一定的,分为$ gal(g)所有三角形。在本文中,我们证明了Tuza的猜想在所有$ m $范围内的Erdős-rényi随机图$ g(n,m)$中,缩小了以前已知的差距。 (最近,Jeff Kahn和Jinyoung Park也独立证明了这一结果。)我们采用了一个随机的贪婪过程,称为在线三角包装过程,以$ G(N,M)$中的三角形包装生产三角形包装,并使用微分方程方法分析了此过程。
A long-standing conjecture of Zsolt Tuza asserts that the triangle covering number $τ(G)$ is at most twice the triangle packing number $ν(G)$, where the triangle packing number $ν(G)$ is the maximum size of a set of edge-disjoint triangles in $G$ and the triangle covering number $τ(G)$ is the minimal size of a set of edges intersecting all triangles. In this paper, we prove that Tuza's conjecture holds in the Erdős-Rényi random graph $G(n,m)$ for all range of $m$, closing the gap in what was previously known. (Recently, this result was also independently proved by Jeff Kahn and Jinyoung Park.) We employ a random greedy process called the online triangle packing process to produce a triangle packing in $G(n,m)$ and analyze this process by using the differential equations method.