论文标题

一种有效的更新方法,用于枚举最大$(δ,γ)$ \ mbox { - }时间网络的集团

An Efficient Updation Approach for Enumerating Maximal $(Δ, γ)$\mbox{-}Cliques of a Temporal Network

论文作者

Banerjee, Suman, Pal, Bithika

论文摘要

给定一个时间网络$ \ MATHCAL {g}(\ MATHCAL {V},\ MATHCAL {E},\ MATHCAL {T})$,$(\ MATHCAL {X},[T_A,T_B,T_B])$和$ [t_a,t_b] \ subseteq \ Mathcal {t} $)被称为$(δ,γ)$ \ mbox { - }集团的$ \ nathcal {g} $,如果在$ \ mathcal {x} $中,每个$γ$ unighte $ friate in $ \ nire unifuatiation $ \ nire unifuation unif $ \ nire univation $ \ quart {x} $Δ $ [T_A,T_B] $。列举这种最大集团是时间网络分析中的一个重要问题,因为它揭示了$ \ Mathcal {g} $的节点之间的接触模式。在本文中,我们研究了在线环境中的最大$(δ,γ)$ \ mbox { - }集团枚举问题; IE。;该网络的整个链接集尚不预先知道,并且链接以迭代方式作为批次。假设,链接设置到时间戳记$ t_ {1} $(即$ \ MATHCAL {e}^{t_ {1}} $),其相应的$(δ,γ)$ - clique set已知。在下一个批次(直到时间$ t_ {2} $)中,到达了一组新的链接(表示为$ \ Mathcal {e}^{(T_1,T_2]} $)。

Given a temporal network $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{T})$, $(\mathcal{X},[t_a,t_b])$ (where $\mathcal{X} \subseteq \mathcal{V}(\mathcal{G})$ and $[t_a,t_b] \subseteq \mathcal{T}$) is said to be a $(Δ, γ)$\mbox{-}clique of $\mathcal{G}$, if for every pair of vertices in $\mathcal{X}$, there must exist at least $γ$ links in each $Δ$ duration within the time interval $[t_a,t_b]$. Enumerating such maximal cliques is an important problem in temporal network analysis, as it reveals contact pattern among the nodes of $\mathcal{G}$. In this paper, we study the maximal $(Δ, γ)$\mbox{-}clique enumeration problem in online setting; i.e.; the entire link set of the network is not known in advance, and the links are coming as a batch in an iterative manner. Suppose, the link set till time stamp $T_{1}$ (i.e., $\mathcal{E}^{T_{1}}$), and its corresponding $(Δ, γ)$-clique set are known. In the next batch (till time $T_{2}$), a new set of links (denoted as $\mathcal{E}^{(T_1,T_2]}$) is arrived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源