论文标题

准菌群在有限维空间上的Banach空间

The Banach space of quasinorms on a finite-dimensional space

论文作者

Sánchez, Javier Cabello, González, Daniel Morales

论文摘要

我们的主要结果指出,在有限维矢量空间$ e $的情况下,在连续式准词集中定义的伪测量值$ \ MATHCAL {q} _0 = \ {\ | \ | \ cdot \ |: $ d(\ | \ cdot \ | _x,\ | \ cdot \ | _y)= \ min \ {μ:\ | \ cdot \ cdot \ | | _x \ | \leqλ\ | \ | \ cdot \ cdot \ cdot \ | __y \ | _y \ leq \ leq leq \ cdot \ | \ cdot \ | \ cdot \ cdot \ | _ coft oftere当我们采用明显的商$ \ mathcal {q} = \ mathcal {q} _0/\!\ sim $时,规范并在$ \ Mathcal {q} $上定义了适当的操作。 我们用一些解释了该空间和Banach-Mazur契约的相关性,并进行了一些解释。

Our main result states that, given a finite-dimensional vector space $E$, the pseudometric defined in the set of continuous quasinorms $\mathcal{Q}_0=\{\|\cdot\|:E\to\mathbb{R}\}$ as $$d(\|\cdot\|_X,\|\cdot\|_Y)=\min\{μ:\|\cdot\|_X \leqλ\|\cdot\|_Y\leqμ\|\cdot\|_X\text{ for some }λ\}$$ induces, in fact, a complete norm when we take the obvious quotient $\mathcal{Q}=\mathcal{Q}_0/\!\sim$ and define the appropriate operations on $\mathcal{Q}$. We finish the paper with a little explanation of how this space and the Banach-Mazur compactum are related.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源